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Overview

We consider the underlying space as the dual space of a normed space
X .

We have seen that X ∗ has the norm and weak topologies.

We now disucss another topology of X ∗.
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Weak∗ Topology

Definition 1.

Let X be a normed space and Q be the natural map from X into X ∗∗.
Then the topology for X ∗ induced by the topologizing family Q(X ) is the
weak∗ (pronounced “weak star”) topology of X ∗ or the X topology of X ∗

or the toplogy σ(X ∗,X ).

That is, the weak∗ topology of X ∗ is the smallest topology for X ∗ such
that, for each x in X , the linear functional Fx : x∗ → x∗x on X ∗ is
continuous with respect to that topology. Note that
Q(X ) = {Fx : x ∈ X}.

Notation

Whenever w∗ (pronounced “weak star”) is attached to a topological
symbol, it indicates that the reference is to the weak∗ topology. For

instance, x∗α
w∗
−−→ X ∗, w∗-limα x

∗
α = x∗, A

w∗
and so on.
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Weak∗ Topology

Note that Q(X ) separates the points of X ∗, we have the following.

Theorem 2.

Let X be a normed space. Then the weak∗ topology of X ∗ is a completely
regular locally convex subtopology of the weak topology of X ∗, and
therefore of the norm topology of X ∗. Moreover, the dual space of X ∗

with respect to this topology is Q(X ).
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Weak∗ Topology

Note that Q(X ) ⊆ X ∗∗, in general.

Theorem 3.

The weak∗ and weak topologies of X ∗ are the same if and only if X is
reflexive (That is, Q(X ) = X ∗∗).

Corollary 4.

Let X be a normed space. Then the weak∗ and norm topologies of X ∗ are
the same if and only if X is finite dimensional.

Theorem 5.

Let X be a normed space. Then a linear functional on X ∗ is weakly∗

continuous if and only if has the form x∗ 7→ x∗x0 for some x0 in X .

That is, weak∗ topology is the weakest topology on the dual X ∗ for which
only continuous functions are the element of the space X .
P. Sam Johnson (NIT Karnataka) Weak* Topology July 2, 2020 5 / 29



Weak and weak∗ topologies of X ∗

The weak and weak∗ topologies of X ∗ may be different. By the above
theorem, the space should not be reflexive. We know that the space c0 is
not reflexive and the dual space of c0 is `1.

Example 6.

Let (en) be the standard basis of c0. Generally (e∗n) is the notion for
bi-orthogonal sequence for (en), that is, e∗m(en) = 1 if n = m, 0 otherwise.
So, in the case (e∗n) is again the sequence whose nth entry is 1 and rest are
0. That is, (e∗n) is the sequence of elements of c∗0 that corresponds in the
usual way to the standard unit vectors of `1.
Now take any element x = (xn) of c0 so by definition (xn) will converge to
zero. Consider the dual action of e∗n on x , it will give xn. So, e∗n(x)
converges to zero for any x in c0. This will give (e∗n) is weakly∗ convergent
to 0. As the natural isometric isomorphism from `1 onto c∗0 is also a
weak-to-weak homeomorphism, (e∗n) does not converge weakly to 0.
Therefore the weak and weak∗ topologies of c∗0 are different.
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Weakly∗ Convergent / Cauchy Nets

As with the weak topology of a normed space, the results obtained for a
Hausdorff locally convex topology induced by a separating vector space of
linear functionals all hold for the weak∗ topology of the dual space X ∗ of a
normed space X .

Let (x∗α) be a net in X ∗.

1. If x∗ is a member of X ∗, then (x∗α) is weakly∗ convergent to x∗ iff
x∗αx → x∗x for each x in X .

2. (x∗α) is weakly∗ Cauchy iff (x∗αx) is weakly∗ Cauchy (that is,
convergent) net in F for each x in X .
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A Basis for Weakly∗ Topology

A basis for the weakly∗ topology of X ∗ is given by the collection of all
subsets of X ∗ of the form{

y∗ ∈ X ∗ : |Fx(y∗ − x∗)| = |(y∗ − x∗)(x)| < 1 for each x in A
}

such that x∗ ∈ X ∗ and A is a finite subset of X .
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Annihilators

Let X be a normed space and let A and B be subsets of X and X ∗

respectively.

Define A⊥ and ⊥B (pronounced ”A perp” and ”perp B”) by the formulas

A⊥ = {x∗ : x∗ ∈ X ∗, x∗x = 0 for each x in A}

⊥B = {x : x ∈ X , x∗x = 0 for each x∗ in B}.

Then A⊥ is the annihilator of A in X ∗ ;

while ⊥B is the annihilator of B in X .
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Annihilators

Since the dual X ∗ of a normed space X is itself a normed space, both ⊥ B
and B ⊥ are defined for each subset B of X ∗, and both have the right to
be called the annihilator of B.

Notation : The space in which the annihilator is being taken should be
made explicit, either by adding the qualifying phrase or by using the
left-hand or right-hand “perp” notation.

Proposition 7.

Let X be a normed space and let A and B be subsets of X and X ∗

respectively.

1. The sets A⊥ and ⊥B are closed subspaces of X ∗ and X respectively.

2. ⊥(A⊥) = [A], the smallest closed set containing A.

3. If A is a subspace of X , then ⊥(A⊥) = A.
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Annihilators

Exercise 8.

Let X be a normed space and let B be a subset of X ∗.

1. Prove that ⊥(B⊥) ⊆ (⊥B)⊥.
For the rest of this exercise, let X = c0 and let B be the subset of X ∗

that corresponds to the set {(αn) : (αn) ∈ `1,
∑

n αn = 0} when c∗0
and `1 are identified in the usual way.

2. Show that ⊥(B⊥) = B.

3. Show that (⊥B)⊥ = X ∗. Thus, the inclusion in 1 may be proper, even
when B is a closed subspace of X ∗.
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Since the weak∗ topology of the dual space of a normed space X is a
subtopology of the norm topology of X ∗, part (a) of the following result is
a strengthening of part (a) of the proposition 7.

Theorem 9.

Let X be a normed space and let A and B be subsets of X and X ∗

respectively.

1. The set A⊥ is a weakly∗ closed subspace of X ∗.

2. (⊥B)⊥ = [B]w
∗
.

3. If B is a subspace of X ∗, then (⊥B)⊥ = B
w∗
.
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Weak∗ bounded

Definition 10.

A subset A of a normed space X is weakly∗ bounded if, for each weak∗

neighbourhood U of 0 in X ∗, there is a positive sU such that

A ⊆ tU

whenever t > sU .

Recall :

Theorem 11 (A useful test for boundedness with respect to
F-topology).

Suppose that X is a vector space and that X ′ is a subspace of X#. Then
a subset A of X is bounded with respect to the X ′-topololgy if and only if
f (A) is bounded in F for each f in X ′.
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Weak∗ bounded

Proposition 12.

Let A be a subset of a normed space X . The set A is weakly∗ bounded if
and only if {x∗x : x∗ ∈ A} is bounded in F for each x in X .

The following result is the weak∗ analog of the fact that a subset of a
normed space is bounded iff it is weakly bounded.

However, notice the requirement that X be a Banach space.
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Theorem 13.

Let X be a Banach space. Then a subset of X ∗ is bounded if and only if
it weakly∗ bounded.

Corollary 14.

Let X be a Banach space. Then a subset A of X ∗ is bounded if and only
if {x∗x : x∗ ∈ A} is a bounded set of scalars for each x in X .
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Recall : Vector Topology

Theorem 15.

Every compact subset of a topological vector space is bounded. Thus,
every convergent sequence in a topological vector space is bounded.

Theorem 16.

Every Cauchy sequence in a topological vector space is bounded.

Theorem 17.

Every convergent net in a topological vector space is Cauchy.
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Corollary 18.

Let X be a Banach space. Then weakly∗ compact subsets of X ∗ are
weakly∗ bounded (or, simply bounded).

Corollary 19.

Let X be a Banach space. Then weakly∗ Cauchy sequences in X ∗ is
weakly∗ bounded (or, simply bounded).

Corollary 20.

Let X be a Banach space. Then weakly∗ convergent sequences in X ∗ is
weakly∗ bounded (or, simply bounded).
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Neither the preceding theorem nor any of its four corollaries remain true if
X is only required to be a normed space.

Example 21.

Let X be the vector space of finitely nonzero sequences equipped with the
`1 norm. For each positive integer m, let x∗m : X → F be defined by the
formula x∗m((αn)) = m.αm. Let A = {x∗m : m ∈ N}.

1. Show that A is a weakly∗ bounded subset of X ∗ that is not norm
bounded, and therefore that the conclusions of Theorem (13) and
Corollary (14) do not follow when X is only required to be a normed
space.

2. Show that the conclusions of Corollaries (18), (19) and (20) do not
follow when X is only required to be a normed space.
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Every nonempty weakly∗ open subset of the dual X ∗ of an
infinite-dimensional normed space is unbounded.

The following result does hold for every normed space, whether or not it is
complete.

We proved that every nonempty weakly open subset of an
infinite-dimensional normed space is unbounded. In a similar way every
nonempty weakly∗ open subset of an infinitely-dimensional normed space
is unbounded.

Theorem 22.

Let X be an infinite-dimensional normed space. Then every nonempty
weakly∗ open subset of X ∗ is unbounded.

Every weakly∗ open subset of X ∗ is too big.

P. Sam Johnson (NIT Karnataka) Weak* Topology July 2, 2020 19 / 29



Recall

We discussed the following two results eariler.

Theorem 23.

The weak topology of a normed space is induced by a metric if and only if
the space is finite dimensional.

Theorem 24.

The weak topology of a normed space is complete if and only if the space
is finite dimensional.
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Weak∗ analogs of the above two results

We now discuss the weak∗ analogs of the above two results.

Theorem 25.

Let X be a Banach space. Then the weak∗ topology of X ∗ is induced by
a metric if and only if X is finite dimensional.

A completeness hypothesis in the preceding result cannot be omitted.

Exercise 26.

Give an example of an infinite-dimensional normed space X such that the
weak∗ topology of X ∗ is metrizable.

Theorem 27.

Let X be a normed space. Then the weak∗ topology of X ∗ is complete if
and only if X is finite dimensional.
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Norm Functions

Just as norm functions are weakly lower semicontinuous, norm functions
on dual spaces are weakly∗ lower semicontinuous.

Theorem 28.

Let X be a normed space. If (x∗α) is a weakly∗ convergent net in X ∗, then
‖w∗- limα x

∗
α‖ ≤ lim infα ‖x∗α‖.

The following result is the partial converse of the preceding theorem.

Theorem 29.

Suppose that X is a normed space, that ‖.‖a is a norm on X ∗ equivalent
to its usual dual norm, and that ‖w∗- limα x

∗
a ‖ ≤ lim infα ‖x∗α‖a whenever

(x∗α) is a weakly∗ convergent net in X ∗. Then there is a norm ‖.‖b on X
equivalent to its original norm such that ‖.‖a is the dual norm on (X , ‖.‖b).

P. Sam Johnson (NIT Karnataka) Weak* Topology July 2, 2020 22 / 29



Some fundamental ways in which the two topologies differ

So far, most of the results have emphasized the similarities between the
weak and weak∗ topologies, especially when the weak∗ topology is for the
dual space of a Banach space.

We discussed the following result. The weak∗ analog of the result does not
hold.

Theorem 30.

The closure and weak closure of a convex subset of a normed space are
the same. In particular, a convex subset of a normed space is closed if and
only if it is weakly closed.
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Some fundamental ways in which the two topologies differ

As the following two examples show, there are also some fundamental
ways in which the two topologies differ.

Example 31.

Let X be a nonreflexive Banach space and let x∗∗ be any member of x∗∗

be any member of X ∗∗ that is not in the image of X under the natural
map from X into X ∗∗.
Since x∗∗ is continuous but not weakly∗ continuous, the kernel of x∗∗ is a
closed convex subset of X ∗ that is not weakly∗ closed. Thus, the weak∗

analog of (30) does not hold.
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Banach-Alaoglu Theorem

Theorem 32 (The Banach-Alaoglu Theorem).

[S. Banach, 1932, L. Alaoglu, 1940] Let X be a normed space. Then BX∗

is weakly∗ compact.

Corollary 33.

Let X be a normed space. Then every bounded subset of X ∗ is relatively
weakly∗ compact. In particular, subsets of X ∗ that are bounded and
weakly∗ closed are weakly∗ compact.

Corollary 34.

Let X be a separable normed space and let A be a bounded subset of X ∗.
Then the relative weak∗ topology of A is induced by a metric.
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Corollary 35.

Let X be a Banach space. Then every weakly∗ Cauchy sequence in X ∗ is
weakly∗ convergent. That is, every Banach space has a weakly∗

sequentially complete dual space.

Corollary 36.

Let X be a normed space. Then there is a compact Hausdorff space K
such that X is isometrically isomorphic to a subspace of C (K ). If X is a
Banach space, then X is isometrically isomorphic to a closed subspace of
C (K ).
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Theorem 37.

Let X be a normed space. Then the relative weak∗ topology of BX∗ is
induced by a metric if and only if X is separable.

Theorem 38.

The natural map Q from a normed space X into X ∗∗ is weak-to- weak∗

continuous, and in fact is a weak-to-relative- weak∗ homeomorphism from
X onto Q(X ).

Corollary 39.

Let X be a normed space and let Q be the natural map from X into X ∗∗.
Then the topologies that Q(X ) inherits from the weak and weak∗

topologies of X ∗∗ are the same.
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Theorem 40 (Goldstine’s Theorem, 1938).

Let X be a normed space and Q be the natural map from X into X ∗∗.
Then Q(BX ) is weakly∗ dense in BX∗∗ .

Corollary 41.

Let X be a normed space and let Q be the natural map from X into X ∗∗.

Then Q(BX )
w∗

= BX∗∗ .

Corollary 42.

Let X be a normed space and let Q be the natural map from X into X ∗∗.
Then Q(X ) is weakly∗ dense in X ∗∗.
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